Objective

The student will be able to:

find the slope of a line given 2 points and a graph.

SOL: A.6a

What is the meaning of this sign?

1. Icy Road Ahead
\checkmark 2. Steep Road Ahead
2. Curvy Road Ahead
3. Trucks Entering

Highway Ahead

What does the 7% mean?

7% is the slope of the road. It means the road drops 7 feet vertically for every 100 feet horizontally.

So, what is slope???
Slope is the steepness of a line.

Slope can be expressed different ways:

$$
m=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}=\frac{\text { rise }}{\text { run }}=\frac{\text { vertical change }}{\text { horizontal change }}
$$

1) Determine the slope of the line.

When given the graph, it is easier to apply "rise over run".

Determine the slope of the line.
Start with the lower point and count how much you rise and run to get to the other point!

Notice the slope is positive AND the line increases!
2) Find the slope of the line that passes through the points $(-2,-2)$ and $(4,1)$.
When given points, it is easier to use the formula!

$$
m=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}
$$

y_{2} is the y coordinate of the $2^{\text {nd }}$ ordered pair $\left(\mathrm{y}_{2}=1\right)$ y_{1} is the y coordinate of the $1^{\text {st }}$ ordered pair $\left(y_{1}=-2\right)$

$$
m=\frac{(1-(-2))}{(4-(-2))}=\frac{(1+2)}{(4+2)}=\frac{3}{6}=\frac{1}{2}
$$

Did you notice that Example \#1 and Example \#2 were the same problem written differently?

$$
\begin{gathered}
(-2,-2) \text { and }(4,1) \\
\text { slope }=\frac{1}{2}
\end{gathered}
$$

You can do the problems either way! Which one do you think is easiest?

Find the slope of the line that passes through $(3,5)$ and $(-1,4)$.

1. 4
2. -4
$\Rightarrow 3.1 / 4$
3. $-1 / 4$
3) Find the slope of the line that goes through the points $(-5,3)$ and $(2,1)$.

$$
\begin{array}{l|r}
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}} & m=\frac{1-3}{2+5} \\
m=\frac{1-3}{2-(-5)} & m=\frac{-2}{7}
\end{array}
$$

Determine the slope of the line shown.

$$
\begin{array}{cc}
\text { V1. } & -2 \\
\text { 2. } & -1 / 2 \\
\text { 3. } & 1 / 2 \\
\text { 4. } & 2
\end{array}
$$

Determine the slope of the line.

Find points on the graph. Use two of them and apply rise over run.

$$
\frac{\text { rise }}{r u n}=\frac{2}{-1}=-2
$$

The line is decreasing (slope is negative).

What is the slope of a horizontal line?

The line doesn't rise! 0

$$
m=\frac{v}{\text { number }}=0
$$

All horizontal lines have a slope of 0 .

What is the slope of a vertical line?

The line doesn't run!

$$
m=\frac{\text { number }}{0}=\text { undefined }
$$

All vertical lines have an undefined slope.

Remember the word "VUXHOY"

Vertical lines
Undefined slope
$\mathbf{X}=$ number; This is the equation of the line. Horizontal lines
O - zero is the slope
$\mathrm{Y}=$ number; This is the equation of the line.

Draw a line through the point $(2,0)$ that has a slope of 3 .

1. Graph the ordered pair $(2,0)$.
2. From $(2,0)$, apply rise over run (write 3 as a fraction).
3. Plot a point at this location.
4. Draw a straight line through the points.

The slope of a line that goes through the points $(r, 6)$ and $(4,2)$ is 4 . Find r. To solve this, plug the given information into the formula

$$
\begin{aligned}
m & =\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)} \\
4 & =\frac{2-6}{4-r}
\end{aligned}
$$

To solve for r, simplify and write as a proportion.

$$
4=\frac{2-6}{4-r} \quad \square \frac{4}{1}=\frac{-4}{4-r}
$$

Cross multiply.

$$
1(-4)=4(4-r)
$$

Simplify and solve the equation.

$$
\begin{aligned}
1(-4) & =4(4-r) \\
-4 & =16-4 \mathrm{r} \\
-16 & -16 \\
\hline \frac{-20}{-4} & =-4 \mathrm{r} \\
5 & =\mathrm{r}
\end{aligned}
$$

The ordered pairs are $(5,6)$ and $(4,2)$

