GRAPHS \& LINEAR EQUATIONS

Example of a Linear Function

Major Elements of Graphing Lines

- Graphing Ordered Pairs
- Graphing Equations
- Linear Equations
- \quad Slope \& Equations
- Finding Equations of Lines
- Fitting Equations to Lines
- Parallel \& Perpendicular Lines

(X, Y) is called an Ordered Pair
The X value or X Coordinate is the location of a point in the X direction

The Y value or Y Coordinate is the location of a point in the Y direction

How to Graph Point ${ }_{(X, Y)}$ $(4,2)$
 X is the distance along the $\mathrm{x}=$ axis
 Y is the distance along the $\mathrm{y}=$ axis
 HINT: Think of the x -axis as the Number Line

 $$
\text { -4-3-2-1 } 01234
$$
 HINT: Think of the y-axis a vertical Number Line

Important Vocabulary for Graphs

The Graph itself is called the $x-y$ plane (ie. Plane surface) or The Coordinate Plane or Cartesian Coordinate Plane after Renee Descartes

Quadrantsstartuitiliositive) IsyandgoGoulterGlockise

Graphing Linear Equations (Find 3 Domain \& Range Points)

First Degree Equations are Lines
$(\mathrm{y}=\mathrm{mx}+\mathrm{b})$ and you calculate 3
(X, Y) values
Make sure the points line up on a $\mathrm{x}-\mathrm{y}$ graph and connect the dots.

RECALL X-Domain \& Y-Range

Graphing Lines is just like finding the Range of 3 Domain Points:
(Substitute each Domain value into the equation)

$$
\begin{aligned}
& \boldsymbol{y}=2 \boldsymbol{x}-7 \text { when the Domain is }\{-2,0,2\} \\
& \mathrm{f}(-2)=2 \cdot(-2)-7=-4-7=-11 \\
& \mathrm{f}(0)=2 \cdot(0)-7=0-7=-7 \\
& \mathrm{f}(2)=2 \cdot(2)-7=4-7=-3
\end{aligned}
$$

Answer: RANGE: \{-11, -7, -3\}

Practice Finding 3 Points Given a Linear Equation

Find any $3(\mathrm{X}, \mathrm{Y})$ points for the following equations:

$$
\begin{gathered}
y=5 x \\
y=4 x-5 \\
y=3 x+1
\end{gathered}
$$

(Hint: Try $\mathrm{x}=0$)

Sample Solutions

Now Graph the 3 Points

\section*{| x | $y=5 x$ |
| :--- | :--- |
| 0 | 0 |
| 1 | 5 |
| 2 | 10 |}

What is Intercept in Math?

Using X\& Y Intercepts to Graph a Line

The Y intercept is the y coordinate (where a line crosses the y axis).

Y yaxis

Name the X\& Y Intercepts

Name the X\&Y Intercepts

Name the X\&Y Intercepts

Name the X\&Y Intercepts

What is the value of x at the y intercept? What is the value of Y at the x-intercept?

Graph $y=2 x-6$ using $x \& y$ intercepts

Graph Linear Eq.

Graph $y=2 x-6$ using $x \& y$ intercepts

Graph Linear Eq.

1st Make x-y table
 2nd Set $x=0$ and solve for y

Graph $y=2 x-6$ using $x \& y$ intercepts

Graph Linear Eq.

1st Make $x-y$ table
2nd Set $x=0$ and solve for y
3rd Set $y=0$ and solve for x

Graph $y=2 x-6$ using $x \& y$ intercepts

Graph Linear Eq.

X	Y	$=2 \mathrm{x}-6$	
0	-6		

Graph $y=2 x-6$ using $x \& y$ intercepts

Graphing Horizontal \& Vertical Lines

This line has a y value of 4 for any x -value. It's equation is
$y=4$ (meaning y always equals 4)

Graphing Horizontal \& Vertical Lines

This line has a x value of 1 for any y -value. It's equation is $x=1$ (meaning x always equals 1)

Y yaxis

The Equation of a Vertical Line is $X=$ Constant

Y yaxis

The Equation of a Horizontal Line is $Y=$ Constant

Y yaxis

Graph the following lines

$$
\begin{aligned}
& Y=-4 \\
& Y=2 \\
& X=5 \\
& X=-5 \\
& X=0 \\
& Y=0
\end{aligned}
$$

Answers

$$
\begin{aligned}
& x=-5 \quad \text { ч yaxis } \quad x=5
\end{aligned}
$$

Answers

Answers

$$
y=0 \longleftrightarrow 4 \mathrm{f}
$$

SLOPE $=\frac{R I S E}{R U N}$

Slope is a measure of STEEPNESS

The Symbol for SLOPE = m

Think of m for Mountain

SLOPE $=\frac{R I S E}{R U N}$

How much does this line rise?
How much does it run?

How much does this line rise? 2) How much does it run? (3)
$\mathrm{m}=\mathrm{SLOPE}=\frac{R I S E}{R U N}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\text { Slope }=m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-2}{6-3}=\frac{2}{3}
$$

Switch points and calculate slope Make (3,2) $\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \&(6,4)\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$

Recalculation with points switched

$$
\text { Slope }=m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-6}{2-5}=\frac{-2}{-3}=\frac{2}{3}
$$

Same slope as before

It doesn't matter what 2 points you choose on a line
the slope must come out the same

Keeping Track of Signs When Finding The Slope Between 2 Points

- Be Neat \& Careful
- Use (PARENTHASES)
- Double Check Your Work as you Go
- Follow 3 Steps

3 Steps for finding the Slope of a line between 2 Points $(3,4) \&(-2,6)$

1st Step: Write $x_{1}, y_{1}, x_{2}, y_{2}$ over numbers

$$
\begin{aligned}
& \mathrm{x}_{1} \mathrm{y}_{1} \quad \mathrm{x}_{2} \mathrm{y}_{2} \\
& (3,4) \&(-2,6)
\end{aligned}
$$

2nd Step: Write Formula and Substitute $x_{1}, x_{2}, y_{1}, y_{2}$ values.

$$
\text { Slope }=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{6-4}{-2-3}
$$

3rd Step: Calculate \& Simplify

$$
\frac{6-4}{-2-3}=\frac{+2}{-5}=-\frac{2}{5}
$$

Find the Slopes of Lines containing these 2 Points

1. $(1,7) \&(5,2)$
2. $(3,5) \&(-2,-8)$
3. $(-3,-1) \&(-5,-9)$
4. $(4,-2) \&(-5,4)$
5. $(3,6) \&(5,-5)$
6. $(1,-4) \&(5,9)$

ANSWERS

1. $(1,7) \&(5,2)$

Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{2-7}{5-1}=\frac{-5}{4}$
3. $(-3,-1) \&(-5,-9)$

Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-9-(-1)}{-5-(-3)}=\frac{-8}{-2}=\frac{4}{1}$
5. $(3,6) \&(5,-5)$

Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-5-6}{5-3}=\frac{-11}{2}$
2. $(3,5) \&(-2,-8)$

Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{-8-5}{-2-3}=\frac{-13}{-5}=\frac{13}{5}$
4. $(4,-2) \&(-5,4)$

Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{4-(-2)}{-5-4}=\frac{6}{-9}=-\frac{2}{3}$
6. $(1,-4) \&(5,9)$

Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{9-(-4)}{5-1}=\frac{13}{4}$

Solve for y if $(9, y) \&(-6,3) \& m=2 / 3$

$$
\begin{aligned}
\text { Slope } & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
\frac{2}{3} & =\frac{3-y_{1}}{-6-9}=\frac{3-y}{-15} \\
(-15) \frac{2}{3} & =\frac{3-y_{1}}{-6-9}=\frac{3-y}{-15}(-15) \\
(-5) 2 & =3-y \\
-10 & =3-y \\
-13 & =-y \\
13 & =y
\end{aligned}
$$

Review Finding the Slopes of Lines Given 2 Points

1 st Step: Write $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{y}_{1}, \mathrm{y}_{2}$ over numbers
2nd Step: Write Formula and Substitute $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{y}_{1}, \mathrm{y}_{2}$ values.
3rd Step: Calculate \& Simplify $\quad m=$ Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

NOTE:
Be Neat, Careful, and Precise and Check your work as you go..

$S L O P E=m=\frac{R I S E}{R U N}$

ZERO Slope Horizontal

$S L O P E=m=\frac{R I S E}{R U N}$

NO Slope
 Vertical Drop

ZERO Slope Horizontal

$$
\frac{R I S E}{R U N}=\frac{0}{\text { any_number }}=0
$$

$$
\frac{R I S E}{R U N}=\frac{\text { any_number }}{0}=\operatorname{Undefined}\left(N O_{-} \text {Slope }\right)
$$

Equations of a Line

There are 3 Forms of Line Equations

- Standard Form: $a x+b y=c$
- Slope Intercept Form: $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{b}$
- Point-Slope Form $y-y_{1}=m\left(x-x_{1}\right)$

All 3 describe the line completely but are used for different purposes. You can convert from one form to another.

Converting from

Standard Form: $\quad a x+b y=c$
 to Slope Intercept Form

$$
\begin{array}{rlrl}
3 x+6 y & =12 & & \\
6 y & =-3 x+12 & & \text { JUST } \\
\frac{6}{6} y & =\frac{-3}{6} x+\frac{12}{6} & & \text { SOLVE } \\
\text { SOR Y }
\end{array}
$$

$$
\begin{array}{r}
y=-\frac{1}{2} x+2 \quad \text { Slope Intercept Form: } \\
\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{b}
\end{array}
$$

Slope Intercept Form: $\quad y=m x+b$

The great thing about this form is b is the y-intercept.
This makes graphing a line incredibly easy. Check it out. If

$$
y=\frac{2}{3} x+1
$$

The y intercept is +1
Almost a free point on graph

Slope Intercept Form: $\quad y=m x+b$

All you have to do now is use the slope to rise and run from the intercept \& connect the points.

$$
\begin{aligned}
& y=\frac{2}{3} x+1 \\
& m=\frac{\text { rise }}{r u n}=\frac{2}{3}
\end{aligned}
$$

Rise 2 and Run 3 from the y-intercept \& connect points.

$y=m x+b$ when m is negative

All you have to do now is use the slope to rise and run from the intercept \& connect the points.

$$
y=-\frac{2}{3} x+1
$$

$m=\frac{r i s e}{r u n}=-\frac{2}{3}$

Rise -2 and Run 3 from the y-intercept \& connect points.

Slope Intercept Form: $\quad y=m x+b$ GRAPH THESE LINEAR EQUATIONS

Label y-intercept \& Use one big graph

$$
\begin{array}{ll}
y=\frac{1}{2} x+1 & y=\frac{2}{5} x+3 \\
y=\frac{3}{2} x-1 & y=\frac{-1}{2} x+1
\end{array}
$$

If linear equation is not in $y=m x+b$ form solve for y

$$
2 y=5 x-4 \quad \text { Solution Steps to Solve for } y:
$$

$$
\frac{2}{2} y=\frac{5}{2} x-\frac{4}{2} \quad \text { Divide by } 2
$$

$$
y=\frac{5}{2} x-2 \quad \text { Now it is }
$$

This line has an y intercept of -2 and rises 5 and runs 2.

Graph $2 y=5 x-4$

Graphing a line with

 slope intercept equation$2 y=5 x-4$
$\frac{2}{2} y=\frac{5}{2} x-\frac{4}{2}$
$y=\frac{5}{2} x-2$

1. Solve for y :
2. Y-Intercept is 1st Point.
3. From the y-intercept

Rise 5 and run 2 for
Second Point.
4. Connect Points with line.

$$
y=\frac{5}{2} x-2 \quad \text { Now it is easy to graph }
$$

Put into slope-intercept form and graph

$$
\begin{aligned}
& 3 y=9 x+3 \\
& 4 y=8 x-4 \\
& y-5=6 x \\
& 2 y-4=6 x-2
\end{aligned}
$$

Review Steps of Graphing from the Slope Intercept Equation

1. Make sure equation is in $y=m x+b$ form
2. Plot $\mathrm{b}(\mathrm{y}$-intercept) on graph $(0, b)$
3. From b, Rise and Run according to the slope to plot 2nd point.
4. Check sign of slope visually

Find the Equation of a Line (Given Pt. \& Slope)

Given a point $(2,5) \& m=5$ Write the Equation

$$
\begin{array}{ll}
y=m x+b & \text { 1. Write Slope-Intercept Equation } \\
5=5(2)+b & \text { 2. } \\
\begin{array}{l}
\text { 2. Plug-in }(\mathrm{x}, \mathrm{y}) \& \mathrm{~m} \text { values } \\
5=10+b
\end{array} & \text { 3. Solve for } \mathrm{b} \\
-5=b &
\end{array}
$$

$$
y=5 x-5
$$

4. Plug $\mathrm{m} \& \mathrm{~b}$ into Slope-Int. Eq.

Find the Equation of a Line (Given Pt. \& Slope) Method 2

Using the Pt.-Slope Eq.

Given a point $(2,5) \& m=5$ Write the Equation

$$
\begin{array}{ll}
y-y_{1}=m\left(x-x_{1}\right) & \text { 1. Write Pt.-Slope Equation } \\
y-5=5(x-2) & \text { 2. 2. Plug-in }(\mathrm{x}, \mathrm{y}) \& \mathrm{~m} \text { values } \\
y-5=5 x-10 & \\
y=5 x-5 & \text { 3 Solve for }
\end{array}
$$

3. Solve for y

$$
y=5 x-5
$$

Find the Equation of a Line (Given 2 Points)

Given a point $\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \&\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$
$(2,5) \&(3,10)$

1. Find Slope using $m=$ Slope $=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$y=m x+b$
$5=5(2)+b$
$5=10+b$
$-5=b$
2. Write Slope-Intercept Equation
3. Plug-in (x, y) \& m values
4. Solve for b
$y=5 x-5$
5. Plug m \& b into Slope-Int. Eq.

Parallel Lines

Have the Same Slope

Perpendicular Lines Have Neg. Reciprocal Slopes

$$
m_{1} \bullet m_{2}=\frac{2}{3} \bullet-\frac{3}{2}=-1
$$

Systems of Equations

Given 2 linear equations
The single point where they intersect is a solution to either equation

It is also the solution to both equations or what we call the solution to the SYSTEM OF EQUATIONS

Systems of Equations

The Solution is where the two lines meet (or intersect)

