3.4 Solving Equations with Variables on Both Sides

Goals - Collect variables on one side of an equation.

- Use equations to solve real-life problems.

VOCABULARY

Identity An identity is an equation that is true for all values of the variable.

Example $1 \quad$ Collect Variables on One Side

Solve $4 x-10=32-3 x$.

Solution

Look at the coefficients of the x-terms. Because 4 is greater than -3 , collect the x-terms on the left side.

$$
\begin{aligned}
& 4 x-10=32-3 x \quad \text { Write original equation. } \\
& 4 x-10+\underline{3 x}=32-3 x+\underline{3 x} \text { Add } 3 x \text { to each side. } \\
& \underline{7 x}-10=32 \\
& \underline{7 x}-10+\underline{10}=32+\underline{10} \quad \text { Add } \underline{10} \text { to each side. } \\
& \underline{7 x}=\underline{42} \quad \text { Simplify. } \\
& \frac{7 x}{7}=\frac{42}{7} \\
& x=\underline{6} \\
& \text { Check } \\
& 4 x-10=32-3 x \\
& 4(\underline{6})-10 \stackrel{?}{=} 32-3(\underline{6}) \\
& \underline{14}=\underline{14} \\
& \text { Simplify. } \\
& \text { Divide each side by } 7 \\
& \text { Simplify. } \\
& \text { Write original equation. } \\
& \text { Substitute } 6 \text { for } x \text {. } \\
& \text { Solution is }
\end{aligned}
$$

Solve the equation.
a. $2(4 x+5)=8 x+10$
b. $x-1=x+7$

Solution

a. $2(4 x+5)=8 x+10 \quad$ Write original equation.

$$
\begin{aligned}
\underline{8 x+10} & =8 x+10 & & \text { Use distributive property. } \\
\underline{10} & =\underline{10} & & \text { Subtract } 8 x \text { from each side. }
\end{aligned}
$$

Answer All values of \boldsymbol{x} are solutions , because $10=10$ is always true. The original equation is an identity.
b. $x-1=x+7 \quad$ Write original equation.

$$
-1 \neq 7 \quad \text { Subtract } x \text { from each side. }
$$

Answer The original equation has no solution, because $-1 \neq 7$ for any value of x.

Example 3 Solving More Complicated Equations

Solve $3(2-x)+2 x=-5(x+2)$.

Solution

$$
\begin{aligned}
3(2-x)+2 x & =-5(x+2) \\
6-3 x+2 x & =-5 x-10 \\
\frac{6-x}{6+4 x} & =-\frac{-10 x-10}{4 x} \\
\frac{4 x}{x} & =-16 \\
x & =-4
\end{aligned}
$$

Write original equation.
Use distributive property.
Combine like terms.
Add $5 x$ to each side.

Divide each side by 4 .

$\begin{aligned} & \text { 1. } 6 x+33=5 x \\ & -33 \end{aligned}$	$\begin{aligned} & \text { 2. } 10 y+22=8 y \\ & -11 \end{aligned}$
3. $b=9 b-24$ 3	$\begin{aligned} & \text { 4. }-2 n=3 n+17 \\ & -3 \frac{2}{5} \end{aligned}$
5. $13 m-26=13 m$ no solution	6. $-6(4-2 x)=12 x-24$ all real numbers
$\begin{aligned} & \text { 7. } 15 a-2(4 a+5)=-6 a \\ & \frac{10}{13} \end{aligned}$	8. $\frac{1}{4}(12-16 q)=5(q+6)$ -3

