Goal: Find the volumes of prisms and cylinders.

Volume of a Prism

Words The volume of a prism is the product of the area B of the base and the height h.

WATCH OUT!

When you find the volume of a triangular prism, be careful not to confuse the height of the prism with the height of the triangular base.

$$
\text { Algebra } V=B h
$$

Example 1 Finding Volumes of Prisms

Find the volume of the prism.
a.

b. 4 in.

$$
\begin{aligned}
V & =B h \\
& =\frac{1}{2}(12)(4)(9) \\
& =216
\end{aligned}
$$

Answer The volume
is 520 cubic meters
Answer The volume
is

Volume of a Cylinder

Words The volume of a cylinder is the product of the area B of the base and the height h.

Example 2 Finding the Volume of a Cylinder

Find the volume of the cylinder.

Solution

The radius is one half the diameter,

$$
\text { so } r=5 \mathrm{ft} \text {. }
$$

$$
\begin{aligned}
V & =B h & & \text { Write formula for volume of a cylinder. } \\
& =\pi r^{2} h & & \text { The area of a circular base is } \pi r^{2} . \\
& =\pi(\sqrt{5})^{2}(\sqrt{6}) & & \text { Substitute } 5 \text { for } r \text { and } 6 \text { for } h . \\
& =150 \pi & & \text { Simplify. } \\
& \approx 471.24 & & \text { Evaluate using a calculator. }
\end{aligned}
$$

Answer The volume is about

```
4 7 1 \text { cubic feet}
```

Guided Practice Find the volume of the solid. Round to the nearest unit.

example 4 Finding the Volume of a Composite Solid

The composite solid shown is composed of a triangular prism and half of a cylinder. Find the volume of the solid in cubic centimeters.

Step 1 Find the volume of the triangular prism.

$$
\begin{aligned}
V & =B h & \text { Write formula for volume of a prism. } \\
& =\frac{1}{2}(6)(4)(8) & =96 \quad \text { Substitute values. Then simplify. }
\end{aligned}
$$

Step 2 Find the volume of half of a cylinder.

$$
\begin{aligned}
V & =B h & & \begin{array}{l}
\text { Write formula for volume of a } \\
\text { cylinder. }
\end{array} \\
& =\frac{1}{2} \pi r^{2} h & & \text { Write formula for half the volume } \\
& =\frac{1}{2} \pi(3)^{2}(\boxed{8}) \approx 113.1 & & \text { Substinder. }
\end{aligned}
$$

Because 1 in. $=2.54$ cm, you know that $(1 \mathrm{in} .)^{3}=(2.54 \mathrm{~cm})^{3}$. Therefore, $1 \mathrm{in}^{3} \approx 16.39 \mathrm{~cm}^{3}$. Use this fact in Step 3.

Step 3 Calculate the volume of the composite solid in cubic centimeters. Find the sum of the volumes from Steps 1 and 2.

$$
V \approx 96+113.1=209.1 \mathrm{in.}^{3}
$$

Guided Practice Find the volume of the solid. Round to the nearest tenth.

Example 5 Graphing a Volume Function

A cylinder has a fixed radius of 4 inches. Graph the volume of the cylinder as a function of x, where x represents the height of the cylinder.

Solution

Step 1 Write a formula for the volume of the cylinder.

$$
\begin{aligned}
V & =\pi r^{2} h \\
& =\pi \cdot(4)^{2} \cdot x \\
& =16 \pi x
\end{aligned}
$$

Step 2 Make a table.

x	V
1	50
2	101
3	151
4	201
5	251

Write formula for volume of a prism.
Substitute.
Simplify.
Step 3 Graph the ordered pairs. Draw a line through the points.

